Quadratics - Solve equations, Quadratic Formula, Complete the square, Graphs

Page	Description
1	Solve quadratic equations that factorise
2	Solve quadratic equations using the Quadratic Formula
3	Solve quadratic equations using the Quadratic Formula
4	Completing the square
5	Finding a turning point by completing the square. Sketching a graph
6	Find the axes crossings, turning point and line of symmetry of a graph
7	Quadratic graphs
8	Quadratic graphs
9	Quadratic graphs including quadratic inequalities
10	Quadratic graphs including quadratic inequalities
11	Using a quadratic graph to solve harder equations

1) Solve $\quad x^{2}+7 x+12=0$

If the equation does not equal 0 , rearrange it so that it does
Factorise the quadratic

$$
(x+3)(x+4)=0
$$

This represents two numbers multiplied together so that the answer is 0 . For example -
If $x=1 \quad(x+3)(x+4)$ becomes $4 \times 5=20$ and not 0 , so $x=1$ is not an answer
The only possible way that two numbers multiplied together have an answer of 0 is if one of the numbers is 0 .

If $\quad(x+3)(x+4)=0 \quad$ Then either $x+3=0, x=-3$ OR $x+4=0, x=-4$
There are two answers, $x=-3$ or -4
2) Solve $\quad x^{2}-4 x-12=0$

Factorise $\quad(x-6)(x+2)=0$
Either $x-6=0, x=6 \quad$ OR $\quad x+2=0, x=-2 \quad$ Answers $x=6$ or -2
3) Solve $2 x^{2}=x+15 \quad$ Rearrange to make $0 \quad 2 x^{2}-x-15=0$

Factorise $\quad(2 x+5)(x-3)=0$
Either $2 x+5=0, x=-\frac{5}{2} \quad$ OR $\quad x-3=0, x=3 \quad$ Answers $x=-2.5$ or 3
Solve these quadratic equations by factorising

1) $x^{2}+6 x+5=0$
2) $2 \mathrm{x}^{2}+\mathrm{x}-21=0$
3) $x^{2}-8 x-20=0$
4) $3 x^{2}-11 x+6=0$
5) $\mathrm{x}^{2}+\mathrm{x}-20=0$
6) $2 x^{2}+7 x-15=0$
7) $\mathrm{x}^{2}-5 \mathrm{x}+6=0$
8) $3 x^{2}+13 x+4=0$
9) $\mathrm{x}^{2}-25=0$
10) $3 x^{2}-11 x+10=0$

The quadratic Formula. The equation must equal ZERO. a is the number of x^{2}, b is the number of x 's and c is the number part. PUT ANY NEGATIVE NUMBERS IN BRACKETS

Give your answers to 2 dip.

$\begin{array}{ll}2 x^{2}-5 x=1 & a= \\ \text { rearrange so that it equals zero } & b= \\ & =0 \\ & c=\end{array}$

(2)

To solve the quadratic equation $a x^{2}+b x+c=0$ use the quadratic formula $x=\frac{-b+/-\sqrt{b^{2}-4 a c}}{2 a}$

NOTE - the equation you are solving must equal 0 before you read off the values of a, b and c.

	taken from the equation				
	Is the equation in the form $a x^{2}+b x+c=0$? If not rearrange it	a number of x	b number of x	C the number	Use the equation to get the two answers. Be careful when substituting negative numbers. Round answers to 2 dp
$x^{2}+5 x+6=0$	Yes	1	5	6	$x=-2$ or -3
$x^{2}+7 x+5=0$					
$5 x^{2}+2 x=4$					
$3 x^{2}=14 x-5$					
$x(9 x-1)=4$					
$7-2 x^{2}=14 x$					

Completing the square for $1 x^{2}$ only
$x^{2}+4 x+7$ is to be written in the form $(x+a)^{2}+b$

half this number (the number of x 's) this gives this number
Now consider what would happen if you expanded $(x+2)^{2}=x^{2}+4 x+4$

We want $x^{2}+4 x$ but don't want the +4 , so we subtract this $(x+2)^{2}-4=x^{2}+4 x$

Put this back in the original expression in place of the $x^{2}+4 x$

$$
x^{2}+4 x+7 \text { becomes }
$$

$$
\begin{aligned}
& (x+2)^{2}-4+7 \\
& (x+2)^{2}+3
\end{aligned}
$$

So $x^{2}+4 x+7$ is the same as $(x+2)^{2}+3$

$$
a=2 \text { and } b=3
$$

1) $x^{2}+2 x+9$
2) $x^{2}-2 x+7$
3) $x^{2}-4 x+10$
4) $x^{2}+6 x+10$
5) $x^{2}-6 x-13$

Sketch the graph

$$
y=x^{2}+2 x-8
$$

1) Find where the graph crosses the y axis, this is when $x=0$

$$
y=0^{2}+2 \times 0-8=-8
$$

2) Find where the graph crosses the x axis, this is when $y=0$

$$
0=x^{2}+2 x-8
$$

Factorise and solve

$$
(x+4)(x-2)=0 x=-4 \text { or } 2
$$

3) Find the turning point of the graph by completing the square

$$
\begin{aligned}
& y=x^{2}+2 x-8=(x+1)^{2}-1-8 \\
& y=(x+1)^{2}-9
\end{aligned}
$$

The minimum value a number squared can be is $0.0^{2}=0$ The lowest value y can be is when the squared part is 0 .

$$
\begin{aligned}
& y=0-9=-9 \\
& \text { so }(x+1)^{2}=0, x+1=0, x=-1
\end{aligned}
$$

The turning point of the graph is at $(-1,-9)$
4) Sketch the graph using these 4 points

$$
x=-1
$$

5) The equation of the line of symmetry of the graph is $x=-1$

This is the graph $\mathrm{y}=\mathrm{x}^{2}+2 \mathrm{x}-15$

1) Find where the graph crosses
a) The y-axis $(x=0)$
b) The x-axis $(y=0)$
2) Find the coordinates of the turning point (Complete the square)
3) What is the equation of the line of symmetry?
4) Solve
a) $x^{2}+2 x-15=0$
b) $x^{2}+2 x-15>0$
c) $x^{2}+2 x-15 \leq 0$

$$
x^{2}-2 x-8=2 x-6 \begin{aligned}
& \text { Hint: draw the line } y=2 x-6 \text { find } \\
& \text { where it crosses your curve }
\end{aligned}
$$

Remember - Quadratic Graphs

This way if x^{2} is positive

This way if x^{2} is negative

$$
x^{2}-3 x-10=0
$$

Hint: The equation you are given is no longer the equation of the curve you have drawn. You must think how to adar the equation you are given so that you can use the graph of $x^{2}-2 x-8$

