Upper and Lower Bounds. Error intervals

Page	Description				
1	Error intervals				
2	Introduction to calculations using upper and lower bounds				
3	More questions on calculations using upper and lower bounds				
4	Word problems				

Error Intervals

Fill in the numbers in the min and max columns for these error intervals

Qu.	Number	Rounding	Min	<u> </u>	Number	< Max
1	4	1 s.f.	3.5	≤	Number	< 4.5
2	20	1 s.f.	15	≤	Number	< 25
3	300	1 s.f.	250	\	Number	< 350
4	6000	1 s.f.	5500	\	Number	< 6500
5	0.4	1 s.f.	0.35	≤	Number	< 0.45
6	1.2	2 s.f.	1.15	≤	Number	< 1-25
7	28	2 s.f.	27.5	≤	Number	< 28.5
8	350	2 s.f.	345	<u>></u>	Number	< 355
9	0.36	2 s.f.	0.355	≤	Number	< 0.365
10	1.0	2 s.f.	0.995	>	Number	< 1.05
11	15	nearest 5	12.5	≤	Number	< 17.5
12	20	nearest 10	15	≤	Number	< 25
13	300	nearest 100	250	≤	Number	< 350
14	6000	nearest 1000	5500	≤	Number	< 6500
15	0.4	nearest tenth	0.35	≤	Number	< 0.45
16	7	nearest whole number	6.5	≤	Number	< 7.5
17	28	nearest multiple of 4	26	≤	Number	< 30
18	350	nearest multiple of 50	325	≤	Number	< 375
19	640	nearest multiple of 20	630	≤	Number	< 650
20	1.99	to 2 dp	1.985	≤	Number	< 1.915

Choose ONE number from Box A and ONE number from Box B.

Box A 5 10

Box B

Biggest Value Smallest Value 5+2=710+4 = 14 A + BA-B 10-2 = 8 5-4=1 AxB 10x4 = 40 5x2 = 10 A ÷ B 10 ÷ 2 = 5 5 ÷ 4 = 1.25

Rather than having a box with two numbers in, the two numbers come from the error interval of the number Both numbers A and B are rounded to the nearest whole number.

A = 7 the error interval is

 $6.5 \le A < 7.5$

B = 3 the error interval is

 $2.5 \le B < 3.5$

To make it like the first example you could set it up like this.

number A

number B

Biggest Value Smallest Value

6.5

2.5

A + B7.5 - 2.5 6.5 - 3.5 A - B

7.5 + 3.5 6.5 + 2.5

7.5

3.5

 $A \times B$

7.5 x 3.5 6.5 X 2.5

 $\mathbf{A} \div \mathbf{B}$

7.5 - 2.5 6.5 - 3.5

Upper and Lower Bounds

1 Both numbers A and B are rounded to the nearest whole number.

$$A = 8$$
 $B = 4$ $7.5 \le A < 8.5$ $3.5 \le B < 4.5$

Biggest Value Smallest Value

2 Both numbers A and B are rounded to the nearest ten. A = 20 B = 10

$$15 \le A < 25$$
 $5 \le B < 15$

Biggest Value Smallest Value

3 Both numbers A and B are rounded to 1 decimal place.

$$A = 6.5$$
 $B = 2.4$ $6.45 \le A < 6.55$ $2.35 \le B < 2.45$

Biggest Value Smallest Value

A+B 6.55 + 2.45 6.45 + 2.35
A-B 6.55 - 2.35 6.45 - 2.45
A×B 6.55 × 2.45 6.45 × 2.35
A+B 6.55
$$\div$$
 2.35 6.45 \div 2.45

4 Both numbers A and B are rounded to 1 significant figure.

$$A = 400$$
 $B = 20$ $350 \le A < 450$ $15 \le B < 25$

Biggest Value Smallest Value

$$A+B$$
 $450+25$ $350+15$
 $A-B$ $450-15$ $350-25$
 $A\times B$ 450×25 350×15
 $A+B$ $450+15$ $350+25$

5 Rounded to the nearest whole number, A = 8 and B = 4. Find a) the minimum and b) the maximum value of

Round any answers to 2 dp

$$\frac{A+B}{A-B}$$

$$Max = \frac{Max}{Min} = \frac{8.5 + 4.5}{7.5 - 4.5} = 4.33$$

$$ML1 = \frac{Min}{Max} = \frac{7.5 + 3.5}{8.5 - 3.5} = 2.2$$

$$A(A-B)$$
 For 8 $7.5 \le A < 8.5$
 $PAX = PAX \times PAX$ For 4 $3.5 \le B < 4.5$
 $= 8.5 \times (8.5-3.5) = 42.5$
 $= 8.5 \times (8.5-3.5) = 42.5$
 $= 7.5 \times (7.5-4.5) = 22.5$

1) To the nearest kg the bear weighs 62 kg and the monkey 27 kg.

Monkey 26.5 \(\) M \(\) 27.5

Bear 61.5 \(\) B \(\) 62.5

- a) What is the maximum possible combined weight of the two animals? 62.5 + 27.5
- b) What is the minimum possible combined weight of the two animals? 26.5 + 61.5
- c) What is the minimum possible difference between their two weights? 61.5 27.5
- d) What is the maximum possible difference between their two weights? $62 \cdot 5 26 \cdot 5$
- e) Barry wants to transport 4 bears in his trailer. The maximum weight the Max weight of 4 bears is trailer can handle is 250 kg to the nearest 10 kg. Can he be sure his trailer is $4 \times 62.5 = 250 \times g$ strong enough to transport the bears? For the trailer 245 = 250 > 245 so he cannot be Sure The trailer is strong.
- 2) A man weighs 60 kg to the nearest 10 kg. $55 \pm M < 65$ A chair can support 65 kg to the nearest kg. $64.5 \le C < 65.5$ Will the chair definitely support his weight? $65 > 64.5 \le C < 65.5$ definitely support the man.

 3) It is estimated that 1200 neonle (rounded to the nearest 100).
- 3) It is estimated that 1200 people (rounded to the nearest 100) are going to attend a concert The concert hall holds 1250 people (rounded to the nearest 10) Is the hall big enough?

Attendance $1150 \leq A < 1250$ Calacity $1245 \leq C < 1255$ May not be as 1250 > 1245