ITERATION

Page	ge Description	
1	Introduction to Iteration	
2	More examples	

The sequence will CONVERGE to a number. This is the answer.

This is an iteration formula

$$u_{n+1} = u_n + 4$$

n stands for the nth term. Like sequences.

- u_1 is the first term. Put this in the formula. The answer is called u_2
- u_2 is the second term. Put this in the formula. The answer is called u_3
- u_3 is the third term. Put this in the formula. The answer is called U_4

n=2

$$u_1 = 7$$

$$u_2 = u_1 + 4 =$$

$$u_3 = u_2 + 4 =$$

$$u_4 = u_3 + 4$$

$$u_5 = u_4 + 4 =$$

$$u_6 = u_5 + 4 = 3$$

$$u_7 = u_6 + 4 = 3$$

$$u_1 = 7$$

Iteration

 $|x_{n+1}| = \sqrt{20 - x_n}$

On your calculator

1) 5 =

 $\sqrt{20 - Ans}$

3) = (also SD if answer not a decimal)

4) Repeat pressing =

X ₁	5	Round to 4 d.p
X 2		
Х3		
X 4		
X 5		
X 6		

The answer is x = _____

This is the solution to the equation $x^2 + x = 20$. Show this is true.

$$x_{n+1} = \sqrt[3]{3x_n + 25}$$

On your calculator

- 1) 4 =
- $\sqrt[3]{3 \times Ans + 25}$
- 3) = (also SD if answer not a decimal)
- 4) Repeat pressing =

X 1	4	Round to 4 d.p.
X 2		
X 3		
X 4		
X 5		
X 6		
X 7		

The answer is x =_____ to 2 d.p.

This is the solution to the equation $x^3 - 3x = 25$. Show this is true.

$$x_{n+1} = \frac{1}{x_n} + 3$$

On your calculator

- 1) 3 =
- $\frac{1}{Ans} + 3$
- 3) = (also SD if answer not a decimal)
- 4) Repeat pressing =

The answer is x =_____ to 2 d.p.

 x1
 3
 round to 4 d.p.

 x2
 x3

 x4
 x5

 x6
 x7

This is the solution to the equation $x^2 - 3x - 1 = 0$. Show this is true.