ALGEBRA - PROOF

Page	Description
1	Prove or disprove a statement by considering several examples
2	Construct a proof using algebra

Algebraic Proof - Two types of questions

Type 1 - Come to a conclusion by considering several examples

1) The number a is prime and b is even.

Is
$$a + b$$
 even, odd or either

Is $a \times b$ even, odd or either

You must write down several examples to cover all the possibilities. Remember for prime numbers to consider 2 the only even prime. Remember to answer the question.

a prime
$$2,3,5,7,11...$$

b even $2,4,6,8,10...$
a+b $2+4=6$ even $3+6=9$ odd
cald be either

$$axb$$
 $2x4 = 8$ even
 $3x6 = 18$ even
even $x = even$ the ans even
odd $x = even$ $even$

- 2) 'q' is an odd whole number and 'p' is an even whole number. Answer the following questions.

 p 2,4,6,8----- q-1,3,5,7,---
 - a) Is pq odd even could be either +x3 even x odd is alway even.
- b) Is 3(p+q) odd even could be either $3\times(2+3)$ even + odd = odd $3\times5=15$ $3\times$ odd = odd
- c) Is $p \div q$ an integer not an could be integer either

$$\frac{12}{3} = 4 \text{ integer}$$

$$\frac{2}{5} = 0.4 \text{ not an integer}$$

So could be either.

Type 2 - Using algebra construct a proof

Helpful results - if n is an integer 2n is always even Consecutive even numbers are 2n and 2n + 2 2n + 1 is always odd Consecutive odd numbers are 2n + 1 and 2n + 3 4n is a muliple of 43(n + 2) is a multiple of 3 etc..

1) n is an integer (whole number)

Is
$$(n+1)^2 - (n-1)^2$$
 even or odd?
 $(n+1)^2 = n^2 + 2n + 4$
 $(n-1)^2 = n^2 - 2n + 1$
 $(n+1)^2 - (n-1)^2$
 $= n^2 + 2n + 1 - (n^2 - 2n + 1)$
 $= n^2 + 2n + 1 - n^2 + 2n - 1$
 $= 4n$
 $= 4n$

2) Prove that the difference between the squares of two consecutive odd numbers is always a muliple of 8.

$$(2n+3)^{2} - (2n+1)^{2}$$

$$= (4n^{2}+12n+9) - (4n^{2}+4n+1)$$

$$= 4n^{2}+12n+9 - 4n^{2}-4n-1$$

$$= 8n+8$$

$$= 8(n+1) \text{ a miltiple of } 8$$

3) Prove that angle X is equal to a + b

angles on a straight line add to 180 X = 180 - (180 - a - b) X = 180 - (180 + a + b) X = 180 - 180 + a + b X = a + b