ALGEBRA - FORMULAS

Page	Description
1	Using formulas
2	Writing a formula and using it
3	Writing a formula and using it
4	Introduction to rearranging formulas
5	Writing, using and rearranging formulas
6	Rearranging formulas
7	More difficult rearranging formulas

Formulae

The charge for a phone calls (in pence) is given by the formula.

Charge =
$$1.2 \times \text{minutes}$$
 or $C = 1.2 \text{m}$

Find the charge for these calls.

a) 3 minutes
$$1.2 \times 3 = 3.6p$$

2 The formula to convert Pounds to Euros is

Converts thes amounts to Euros.

Speed = distance ÷ time

Distance = 63 miles

Time = 3 hours.

Find the speed.

4 Rectangle

Area = bh Perimeter = 2b + 2hh b

$$b = 7$$
 cm and $h = 4$ cm. Find

b) Perimeter =
$$2 \times 7 + 2 \times 4$$

14 + 8 = 22cm

5 Area = $bh \div 2$

b = 6 cm and h = 4 cm. Find the area \searrow 6x4+2=24+2=12cn

a = 4 cm, b = 10 cm and h = 4 cm.

Find the area

$$(4+10)x4+2$$

= $14x4+2$
= $56+2$
= $28cm^2$

v = u + at

u = 20, a = 5 and t = 2. Find v.

$$\sqrt{-20+5} \times 2$$

= 20+10
= 30

8 $s = ut + \frac{1}{2}at^2$

$$u = 10$$
, $a = 4$ and $t = 5$. Find s.
 $S = 10 \times 5 + \frac{1}{2} \times 4 \times 5^{2}$
 $S = 50 + \frac{1}{2} \times 4 \times 25$
 $S = 50 + 50 = 100$

9
$$s = \frac{1}{2}(u+v) \dagger$$

u = 10, v = 14 and t = 3. Find s. 5= 1 (10+14)x3 = 1/2 × 24 ×3 = 36

F = temperature in °F C = temperature in $^{\circ}C$

a) Find F when
$$C = 5 \, ^{\circ}C = 41^{\circ}F$$

b) Find F when $C = 100 \, ^{\circ}C$ $= 1.8 \times 100 + 32$ 212°F

There are b bears

There are d ducks

L stands for the total number of legs

Write a formula
$$L = 4xb + 2xd$$

 $L = 4b + 2d$

If b = 5 and d = 3 what does L =?
$$\frac{4 \times 5 + 2 \times 3}{-26}$$

there are u unicycles

there are b bikes

there are c cars (ignore spare wheel and steering wheel)

W stands for the total number of wheels. W = U + 2b + 4c

There are

t triangular buttons

s square buttons

c circular buttons

H stands for the total number of holes.

If t = 4, s = 2 and c = 5 what does H=?

f blocks of flats

h houses

b bungalows

W stands for windows you can see. W =
$$\frac{16 \times f + 5 \times h + 2 \times b}{16 + 5 + 5 + 2b}$$

If
$$f = 2$$
, $h = 10$ and $b = 7$, what does $W = ?$

$$W = 16 \times 2 + 5 \times 10 + 2 \times 7$$

$$= 32 + 50 + 14$$

1) There are 's' 2p pieces, 't' 5p pieces and 'u' 10p pieces. Write a formula for the total amount of money.

Total = 2xs + 5xt + 10x0 = 2s+5t+100

- 2) On a mobile phone tarif. John pays 11p per text and 15p per minute for a call. He makes 'm' minutes of calls and sends 't' texts. Write a formula for the total cost of his bill. Tatal = 11xt + 15xm = 11t + 15m
- 3) There are 'L' ladybirds, 'd' ducks and 'b' bears. Write a formula for the total number of legs.

Legs = 6xL + 2xd + 4xb = 6L + 2d + 4b

4) Pens cost 23p each. Pencils cost 12p. Sally buys 'p' pens and 'q' pencils. Write a formula for the total cost of the pens and pencils.

$$(ast = 23 \times p + 12 \times q)$$

= 23p + 12q

5) Taria has 'a' 10g weights and 'b' 20g weights. Write a formula for the total weight he has.

6) To cook a chicken it takes 30 minutes per kg plus an extra 20 minutes. Write a formula for the total time taken to cook a chicken weighing 'w' kg.

7) To go to the cinema it costs £4 per child and £6 per adult. 'a' adults and 'c' children go to the cinema. Write a formula for the total cost.

8)
$$C = 10s + 20$$
 Find C when $s = 10$ $C = 10 \times 10 + 20$
= 100 + 20
= 120

9)
$$T = 5a + 3b$$
 Find T when $a=2$ and $b=10$
 $T = 5 \times 2 + 3 \times 10 = 10 + 30 = 40$

10) Using the formulas you have written find the answers when

a) Qu 1 s=4, t=3 and u=2
$$2 \times 4 + 5 \times 3 + 10 \times 2 = 43$$

d) Qu 4 p=3 and q=3
$$23 \times 3 + 12 \times 3 = 105p = \pm1-05$$

g) Qu 7 a=2 and c=4
$$4 \times 4 + 6 \times 2 = 28$$

There are **b** bears

There are d ducks

L stands for the total number of legs

There are 6 bears (b = 6) and 3 ducks (d = 3). How many legs?

$$L = 10$$
 and $b = 2$. $d = ?$

$$L = 20$$
 and $d = 4$. $b = ?$

Duchs \$\frac{4}{20} = 8 \left \left

Write these formulas L given b and d.

b given L and d.

d given L and b.

$L = 4 \times 6 + 2 \times d$ L = 45 + 2d

$$d = \underbrace{L - 4b}_{2}$$

BUTTONS

There are

ttriangular buttons

s square buttons

H stands for the total number of holes.

If s = 2 and t = 5 what does H = ? 8 + 17 = 23

If H = 14 and t = 2 what does s = $(14 - 3 \times 2) - 4 = 2$

If H = 18 and s = 3 what does $t = (18 - 4 \times 3) \div 3$ 6 ÷ 3 = 2

Write these formulas

H = given s and t H = 4s + 3t

 $s = given H and t S = \frac{H-3t}{4}$

t = given H and s t = H - 4S

Formulas

1 Look at the following patterns of grey and white squares.

a) Fill in this table

İ	White squares (w)	1	2	3	4	5	6
	Grey squares (g)	2	4	6	8	10	12

- b) How many grey squares would there be for 10 white squares?
- c) How many white squares would there be for 30 grey squares?
 - d) Write down a rule for finding the number of grey squares (g) if you know the number of white squares (w).

$$g = 2 \times \omega$$
 $g = 2 \omega$

- e) Write down a rule for finding the number of white squares (w) if you know the number of grey squares (g). $w = g \div 2 \qquad w = g$
- 2 Look at the following patterns of grey and white squares.

a) Fill in this table

White squares (w)	1	2	3	4	5	6
Grey squares (g)	3	5	7	9	11	13

- b) How many grey squares would there be for 10 white squares? 21
- d) Write down a rule for finding the number of grey squares (g) if you know the number of white squares (w). $g = 2x\omega + 1$ $g = 2\omega + 1$
- e) Write down a rule for finding the number of white squares (w) if you know the number of grey squares (g). w = g 1

Make x the subject of each of these formulas

1)
$$x + a = b$$
 $x = b - a$

5)
$$\sqrt{x} = j$$
 $x = \int_{-\infty}^{\infty}$

9)
$$ax + b^2 = c$$
 $x = \frac{c - b^2}{a}$

$$2) \times -c = d \times = d + C$$

$$6) x^2 = k \qquad x = \sqrt{K}$$

10) abcx = d
$$x = \frac{d}{abc}$$

3) ex =
$$f$$
 $x = \frac{f}{e}$

7) mx + n = p
$$x = \frac{p-n}{m}$$

11)
$$4x - 9y = 8$$
 $x = \frac{8 + ay}{4}$

4)
$$\frac{x}{g} = h \quad x = g^h$$

8)
$$\frac{x}{q}$$
 - s = t
 $x = (t+s) \times q$
= $q(t+s)$

12)
$$a - x = b$$
 $a = b + x$
 $x = a - b$

b

$$h = A = bh$$

$$b = \frac{A}{h}$$

$$P = 2b + 2h$$

$$b = P - 2h$$

Rearranging Formulas

Make 'x' the subject of these formulas

2)
$$s = 2x$$
 $x = 5/2$

3)
$$w = 2x + y \quad x = \frac{w - y}{2}$$

4)
$$d = 3x + 4y \quad x = \frac{d - 4y}{2}$$

5)
$$e = \frac{x}{3}$$
 $\chi = 3e$

6)
$$y = x - 3d$$
 $x = y + 3d$

7)
$$y = 3x^2$$
 $x = \sqrt{\frac{y}{3}}$

8)
$$a-x=y$$
 $x=a-y$

9)
$$d = \frac{x}{3} - h$$
 $x = 3(d+h)$

10)
$$y = \sqrt{x} - 2$$
 $x = (y+2)^2$

Make the letter in brackets the subject of these formulas. Write down what each formula is for, including defining each letter.

11)
$$C = \pi d$$
 (d)

$$(d) \quad d = C/\pi$$

21)
$$ax = bx + y$$

12)
$$A = \pi r^2$$

12)
$$A = \pi r^2$$
 (r) $\Gamma = \sqrt{\frac{A}{\pi}}$

$$ax - bx = y$$

 $x(a - b) = y$

13)
$$V = L \times B \times H$$
 (L) $L = \frac{V}{RH}$

$$x = y$$

$$14) \quad S = \frac{D}{T}$$

14)
$$S = \frac{D}{T}$$
 (T) $T = \mathfrak{D}/S$

15)
$$V = \pi r^2 h$$

15)
$$V = \pi r^2 h$$
 (h) $h = \frac{V}{\pi r^2}$

$$ax - cx = dy + by$$

22) ax - by = cx + dy

16)
$$V = \pi r^2 h$$

16)
$$V = \pi r^2 h$$
 (r) $\Gamma = \sqrt{\frac{V}{11h}}$

$$x(a - c) = dy + by$$

17)
$$V = \frac{1}{3}\pi r^2 h$$
 (h) $h = \frac{3V}{\pi r^2}$

$$h = \frac{3V}{\pi r^2}$$

$$x = dy + by$$

18)
$$V = \frac{1}{3}\pi r^2 h$$
 (r) $r = \sqrt{\frac{3V}{\Pi h}}$

19)
$$D = \frac{M}{V}$$
 (M) $M = \mathcal{D}V$

$$M) \qquad M = DV$$

20)
$$V = \frac{4}{3}\pi r^3$$
 (r) $\Gamma = \sqrt[3]{\frac{3V}{4V}}$