ALGEBRA - FORMULAS

Page	Description
1	Using formulas
2	Writing a formula and using it
3	Writing a formula and using it
4	Introduction to rearranging formulas
5	Writing, using and rearranging formulas
6	Rearranging formulas
7	More difficult rearranging formulas

Formulae

1 The charge for a phone calls (in pence) is given by the formula.

Charge $=1.2 \times$ minutes or $C=1.2 \mathrm{~m}$
Find the charge for these calls.
a) 3 minutes $1.2 \times 3=3.6 p$
b) 10 minutes $1.2 \times 10=12 p$

2 The formula to convert Pounds to Euros is
Euros $=1.15 \times$ Pounds or $€=1.15 \times £$
Converts the amounts to Euros.
a) $£ 50$
1.15×50
b) $£ 200$
$=E 57.50$
も 230

3 Speed = distance \div time
Distance $=63$ miles
Time $=3$ hours.
Find the speed.
speed $=\frac{63}{3}=21 \mathrm{mh}$

4

Rectangle	Area $=b h$ Perimeter $=2 b+2 h$ h

$b=7 \mathrm{~cm}$ and $\mathrm{h}=4 \mathrm{~cm}$. Find
a) Area $=7 \times 4=28 \mathrm{~cm}^{2}$
b) Perimeter $=2 \times 7+2 \times 4$
$14+8=22 \mathrm{~cm}$

$b=6 \mathrm{~cm}$ and $\mathrm{h}=4 \mathrm{~cm}$. Find the area ${ }^{2}$ $6 \times 4 \div 2=24 \div 2=12 \mathrm{~cm}^{2}$
$7 v=u+a t$

$$
u=20, a=5 \text { and } t=2 \text {. Find } v \text {. }
$$

$$
v=20+5 \times 2
$$

$$
=20+10
$$

$$
=30
$$

$8 s=u t+\frac{1}{2} a t^{2}$
$u=10, a=4$ and $t=5$. Find s.
$s=10 \times 5+\frac{1}{2} \times 4 \times 5^{2}$
$s=50+\frac{1}{2} \times 4 \times 25$
$s=50+50=100$
$9 s=\frac{1}{2}(u+v) t$
$u=10, v=14$ and $t=3$. Find s.
$s=\frac{1}{2}(10+14) \times 3$
$10 \mathrm{~F}=1.8 \mathrm{C}+32$

$a=4 \mathrm{~cm}, \mathrm{~b}=10 \mathrm{~cm}$ and $\mathrm{h}=4 \mathrm{~cm}$.
Find the area

$$
\begin{gathered}
(4+10) \times 4 \div 2 \\
=14 \times 4 \div 2 \\
=56 \div 2 \\
=28 \mathrm{~cm}^{2}
\end{gathered}
$$

$\mathrm{F}=$ temperature in ${ }^{\circ} \mathrm{F}$
$C=$ temperature in ${ }^{\circ} \mathrm{C}$
a) Find F when $C=5{ }^{\circ} \mathrm{C}=1.8 \times 5+32$
b) Find F when $\mathrm{C}=100^{\circ} \mathrm{C}$
$=1.8 \times 100+32$
$=212^{\circ} \mathrm{F}$

There are b bears
There are d ducks

there are u unicycles there are b bikes
there are cars (ignore spare wheel and steering wheel) $1 x v+2 x b+4 x c$
Write a formula

$$
\begin{aligned}
& L=4 \times b+2 \times d \\
& L=4 b+2 d
\end{aligned}
$$

If $b=5$ and $d=3$ what does $L=? \begin{aligned} 4 \times 5 & +2 \times 3 \\ & =26 \text { legs }\end{aligned}$

W stands for the total number of wheels. $W=u+2 b+4 c$
If $u=4, b=3$ and $c=5$ what does $W=? \begin{aligned} W & =4+2 \times 3+4 \times 5 \\ & =4+6+20\end{aligned}$

f blocks of flats

표 b bungalows
W stands for windows you can see. $W=\begin{aligned} & 16 x f+5 \times h+2 \times b \\ & 16 f+5 h+26\end{aligned}$

If $f=2, h=10$ and $b=7$, what does $W=$?

$$
\begin{aligned}
w & =16 \times 2+5 \times 10+2 \times 7 \\
& =32+50+14 \\
& =96
\end{aligned}
$$

1) There are 's' $2 p$ pieces, ' t ' $5 p$ pieces and 'u' 10p pieces.

Write a formula for the total amount of money.

$T_{\text {total }}=2 \times s+5 \times t+10 \times v=2 s+5 t+10 u$
2) On a mobile phone tarif. John pays 11 p per text and 15 p per minute for a call. He makes ' m ' minutes of calls and sends ' t ' texts. Write a formula for the total cost of his bill.

$$
\begin{aligned}
\text { Total } & =11 \times t+15 \times \mathrm{m} \\
& =11 t+15 \mathrm{~m}
\end{aligned}
$$

3) There are 'L' ladybirds, 'd' ducks and 'b' bears. Write a formula for the total number of legs.

Legs $=6 \times L+2 \times d+4 \times b=6 L+2 d+4 b$
4) Pens cost $23 p$ each. Pencils cost $12 p$. Sally buys ' p ' pens and ' q ' pencils. Write a formula for the total cost of the pens and pencils.

5) Tariq has ' a ' $10 g$ weights and 'b' $20 g$ weights. Write a formula for the total weight he has.

6) To cook a chicken it takes 30 minutes per kg plus an extra 20 minutes. Write a formula for the total time taken to cook a chicken weighing ' w ' kg .

$$
\text { Tine }=30 \times w+20=30 w+20
$$

7) To go to the cinema it costs $£ 4$ per child and $£ 6$ per adult. ' a ' adults and ' c ' children go to the cinema. Write a formula for the total cost.

$$
\text { cost }=4 \times c+6 \times a=4 c+6 a
$$

8) $C=10 s+20$

Find C when $s=10$

$$
\begin{aligned}
C & =10 \times 10+20 \\
& =100+20 \\
& =120
\end{aligned}
$$

9) $T=5 a+3 b \quad$ Find T when $a=2$ and $b=10$

$$
T=5 \times 2+3 \times 10=10+30=40
$$

10) Using the formulas you have written find the answers when
a) Qu $1 s=4, t=3$ and $u=2 \quad 2 \times 4+5 \times 3+10 \times 2=43$
b) Qu $2 \mathrm{~m}=20$ and $t=30 \quad 11 \times 30+15 \times 20=630$
c) Qu $3 L=2, d=4$ and $b=3 \quad 6 \times 2+2 \times 4+4 \times 3=32$
d) Qu $4 p=3$ and $q=3 \quad 23 \times 3+12 \times 3=105 p=f 1-05$
e) Qu $5 \quad a=3$ and $b=6 \quad 10 \times 3+20 \times 6=150 g$
f) Qu $6 w=3 \mathrm{~kg} \quad 30 \times 3+20=110$ runctes $=1 \mathrm{~h} 50 \mathrm{mms}$
g) Qu $7 \quad a=2$ and $c=4$
$4 \times 4+6 \times 2= \pm 28$

LEGS

There are b bears

There are d ducks

L stands for the total number of legs
There are 6 bears $(b=6)$ and 3 ducks $(d=3)$. How many legs?
$4 \times 6+3 \times 2$
$L=10$ and $b=2 . d=$? Bears $2 \times 4=8$ logs $24+6=30$ $10-8=2$ loas laft for ducks
$L=20$ and $d=4 . b=$? Duchs $<2=8$ legs
Write these formulas
L given b and d.

$$
\begin{aligned}
& L=4 \times b+2 \times d \\
& L=4 b+2 d . \\
& b=\frac{L-2 d}{4} \\
& d=\frac{L-4 b}{2}
\end{aligned}
$$

BUTTONS

There are

H stands for the total number of holes.

$$
\left.\begin{array}{l}
\text { If } s=2 \text { and } t=5 \text { what does } H=? \begin{array}{c}
2 \times 4+5 \times 3 \\
8+15=23
\end{array} \\
\text { If } H=14 \text { and } t=2 \text { what does } s=(14-3 \times 2) \div 4 \\
=8-4=2
\end{array}\right] \begin{gathered}
\text { If } H=18 \text { and } s=3 \text { what does } t=(18-4 \times 3) \div 3 \\
6 \div 3=2
\end{gathered}
$$

Write these formulas

$$
\begin{array}{ll}
H= & \text { given } s \text { and } t \quad H=4 s+3 t \\
s= & \text { given } H \text { and } t \quad s=\frac{H-3 t}{4} \\
t=\text { given } H \text { and } s \quad t=\frac{H-4 s}{3}
\end{array}
$$

1 Look at the following patterns of grey and white squares.

a) Fill in this table

White squares (w)	1	2	3	4	5	6
Grey squares (g)	2	4	6	8	10	12

b) How many grey squares would there be for 10 white squares? \qquad
20
c) How many white squares would there be for 30 grey squares?

15

d) Write down a rule for finding the number of grey squares (g) if you know the number of white squares (w).

$$
g=2 \times w \quad g=2 w
$$

e) Write down a rule for finding the number of white squares (w) if you know the number of grey squares (g).

$$
w=9 \div 2 \quad w=\frac{9}{2}
$$

2 Look at the following patterns of grey and white squares.

a) Fill in this table

White squares (w)	1	2	3	4	5	6
Grey squares (g)	3	5	7	9	11	13

b) How many grey squares would there be for 10 white squares? \qquad 21
c) How many white squares would there be for 41 grey squares? 20
d) Write down a rule for finding the number of grey squares (g) if you know the number of white squares $(w) . \quad g=2 x \omega+1 \quad g=2 \omega+1$
e) Write down a rule for finding the number of white squares (w) if you know the number of grey squares (g).

Make x the subject of each of these formulas

1) $x+a=b \quad x=b-a$
2) $\sqrt{ } x=j \quad x=j^{2}$
3) $a x+b^{2}=c \quad x=\frac{c-b^{2}}{a}$
4) $x-c=d x=d+c$
5) $x^{2}=k \quad x=\sqrt{k}$
6) $a b c x=d \quad x=\frac{d}{a b c}$
7) ex $=f \quad x=\frac{f}{e}$
8) $m x+n=p \quad x=\frac{p-n}{m}$
9) $4 x-9 y=8$

$$
x=\frac{8+a y}{4}
$$

4) $\frac{x}{g}=h \quad x=g h$
5)

$$
\begin{aligned}
\frac{x}{q}-s & =t \\
x & =(t+s) \times q \\
& =q(t+s)
\end{aligned}
$$

$$
x=a-b
$$

b
12) $a-x=b$

$$
a=b+x
$$

$$
\begin{aligned}
& A=\text { Area } \\
& P=\text { Perimeter } \\
& \text { h } \\
& A=b h \\
& b=\frac{A}{h} \\
& A=\text { Area } \\
& P=2 b+2 h \\
& b=\frac{p-2 h}{2}
\end{aligned}
$$

Make ' x ' the subject of these formulas

1) $\mathrm{A}=\mathrm{x}+\mathrm{y} \quad x=A-y$
2) $y=x-3 d \quad x=y+3 d$
3) $s=2 x \quad x=s / 2$
4) $y=3 x^{2}$
$x=\sqrt{\frac{y}{3}}$
5) $w=2 x+y \quad x=\frac{w-y}{2}$
6) $a-x=y \quad x=a-y$
7) $d=3 x+4 y \quad x=\frac{d-4 y}{3}$
8) $d=\frac{x}{3}-h \quad x=3(d+h)$
9) $e=\frac{x}{3} \quad x=3 e$
10) $y=\sqrt{x}-2 \quad x=(y+2)^{2}$

Make the letter in brackets the subject of these formulas. Write down what each formula is for, including defining each letter.
11) $C=\pi d$
(d) $d=C / \pi$
12) $\mathrm{A}=\pi \mathrm{r}^{2}$
(r) $r=\sqrt{\frac{A}{\pi}}$
21) $a x=b x+y$
(L) $L=\frac{V}{B H}$ $a x-b x=y$
13) $V=L \times B \times H$
(T) $T=D / S$
14) $S=\frac{D}{T}$
15) $V=\pi r^{2} h$
(h) $\quad h=\frac{V}{\pi r^{2}}$
22) $a x-b y=c x+d y$
(r) $r=\sqrt{\frac{V}{\pi h}}$ $x(a-b)=y$
$x=\frac{y}{a-b}$
16) $V=\pi r^{2} h$
(h) $h=\frac{3 V}{\pi r^{2}}$
$a x-c x=d y+b y$
$x(a-c)=d y+b y$
17) $V=\frac{1}{3} \pi r^{2} h$
(r) $r=\sqrt{\frac{3 V}{\pi h}}$
18) $V=\frac{1}{3} \pi r^{2} h$
(M) $\quad M=D V$
19) $D=\frac{M}{V}$
(r) $r=\sqrt[3]{\frac{3 V}{4 \pi}}$
20) $V=\frac{4}{3} \pi r^{3}$

